Modelling nucleophilic substitution at silicon in solution, using hypervalent silicon compounds based on 2-pyridones

Alan R. Bassindale,* Moheswar Borbaruah, Simon J. Glynn, David J. Parker and Peter G. Taylor *

The Chemistry Department, The Open University, Walton Hall, Milton Keynes, UK MK7 6AA

Received (in Cambridge, UK) 2nd June 1999, Accepted 27th July 1999

A novel method for performing structure correlations in solution is described. Examination of how the ¹³C chemical shifts of the ring carbons of substituted 2-pyridones change on complexation of the oxygen with silicon has enabled the % Si–O bond formation to be determined in solution for a number of pentacoordinate silicon species with 2-pyridones as ligands. The % pentacoordination in these complexes has been determined from the ²⁹Si chemical shift using model compounds for the tetracoordinate and pentacoordinate limiting cases. Correlation of the % Si–O bond formation with % pentacoordination enables the pathway for substitution at silicon to be mapped in solution. The generality of these techniques is examined using a series of related aromatic ligands.

Introduction

X-Ray crystallographic studies have been used by Dunitz, Bürgi¹ and others²⁻⁶ to determine the molecular pathways of a variety of reactions. Such crystal structure correlations involve collecting together the crystal structures of a range of structurally similar compounds and then sequencing them on the basis of key crystal data (usually inter-atom distances). Thus, a picture of the gradual molecular deformation on going from reactants to products is built up. Each individual structure represents a snapshot of the reaction at a particular point on the modelled reaction profile. This methodology has been applied to nucleophilic substitution at silicon by a number of groups.³⁻⁶ The general picture that has emerged involves formation of the nucleophile-silicon bond accompanied by lengthening of the silicon-leaving group bond. The tetrahedral reactants are converted into a trigonal bipyramidal structure with the nonparticipating groups equatorial followed by reversion to a tetrahedral structure. For example, Baukov⁴ and Pestunovich⁵ separately examined the crystal structures of a range of related amidomethylhalosilanes (1). The resulting trajectory for nucleo-

philic substitution at silicon exhibited a hyperbolic relationship between the Si–O and Si–X bond lengths and a regular variation of the position of the silicon atom relative to the plane of the three equatorial carbon atoms. We sought to develop a method that would enable similar structure correlations to be obtained in the solution phase, using ¹³C and ²⁹Si NMR spectroscopy as the monitoring tools. Initial results have been published ^{7,8} and this paper provides a detailed description of the technique.

Unlike X-ray crystallography, which gives detailed information on the bond lengths and spacial arrangement of atoms, NMR only provides an insight into the connectivity and localised environment around particular nuclei.9 Furthermore quantitative molecular coordinates can usually only be obtained through the use of model compounds. Thus, structural correlations using NMR require careful design of appropriate systems. The minimum requirement for studying the progress of a reaction is two parameters that measure the extent of bond formation or breaking and/or the change in geometry around a key site. NMR chemical shifts are sensitive to a number of parameters such as bond order, coordination number and localised electronic environment. Thus deconvolution of NMR data to provide the required information to construct a reaction profile is potentially very difficult. Clearly the task is made much easier if the system is designed so that particular chemical shifts essentially depend upon only one of the variables.

The ²⁹Si chemical shift is particularly susceptible to the coordination number around the silicon, having a value of between +24 ppm and -76 ppm for four coordinate silicon, -47 ppm and -110 ppm for five coordinate silicon.¹⁰ and -142 ppm and -220 ppm for six coordinate silicon.¹¹ Although the regions overlap for four and five coordination, the addition of an extra ligand to a four coordinate silicon leads to a substantial upfield shift. Thus, within a series of structurally similar compounds, the ²⁹Si chemical shift can be used as an indicator of the gradual change in coordination number.¹²

The extent of bond formation or breaking is a little more difficult to measure. For example, the attacking or leaving atom may not be NMR active or its chemical shift may depend upon a number of factors. One alternative is to monitor the chemical shifts of atoms attached to the attacking atoms. However, this may lead to a smaller variation in the chemical shifts and there is still no guarantee that the chemical shift will only depend upon the extent of bond formation or breaking. A better strategy is to use conjugated systems where bonding changes at the nucleophilic atom are relayed to more distant atoms that are not affected by other changes at the reaction centre. Furthermore the chemical shift change in such conjugated systems is often substantial. We chose to base our initial studies on the

J. Chem. Soc., Perkin Trans. 2, 1999, 2099–2109 2099

substituted 2-pyridones (2). Judicious choice of substituent Y and leaving group X leads to a series of compounds with differing extents of O–Si bond formation and Si–X bond cleavage enabling us to model the pathway for substitution at silicon.

Results and discussion

The model compounds **3a–d**, **4a–d**, **5a–d**, **6a–d**, **7a–d** and **8a–d** were prepared from the commercially available 2-pyridones, as shown in Scheme 1. Treatment of the substituted 2-pyridone

Scheme 1 Synthesis of model compounds.

with diethylaminotrimethylsilane gave the corresponding 2trimethylsiloxypyridine.¹³ Reaction of this with chloromethyldimethylchlorosilane gave the chloro derivatives **3b–8b**,¹⁴ whereas treatment with chloromethyldimethylsilyl triflate gave the triflato derivatives **3d–8d**. The bromo derivatives were prepared by treating the substituted 2-trimethylsiloxypyridine with bromomethyldimethylchlorosilane. Reaction using chloromethyldimethylfluorosilane gave the chloro derivative, thus the fluoro derivatives were prepared by treating the chloro derivatives with antimony trifluoride.

The ¹³C spectra of these pentacoordinate compounds showed that as predicted the chemical shift of the ring carbons changed systematically with leaving group, a similar pattern being observed for each substituted 2-pyridone. However, in order to carry out a structure correlation, the extent of bond formation or breaking needs to be calculated from this chemical shift data. This is achieved using the corresponding model compounds **9** and **10** that represent 0 and 100% O–Si bond formation

respectively. Since these two compounds are the limiting cases that provide the anchor for the calculation of the % Si–O bond formation, it is important that they are chosen with care. Compound 9 was employed, rather than the simpler *N*-methyl-2-pyridone, to ensure that the electronic effects of the N-substituent on the chemical shifts of the ring carbons were

Fig. 1 The change in chemical shift as a function of Si–O bond formation for compounds 5a-d.

similar to those expected of compound 2 with 0% O-Si bond formation. There is the possibility of some Si-O bond formation with compound 9, but this was shown to be negligible by the ²⁹Si chemical shifts, which are consistent with a four coordinate disiloxane.¹⁵ Similarly, the ¹³C chemical shifts of the ring carbons are equivalent to those of non-silicon containing N-alkyl-2-pyridones. X-Ray crystal structures of amidomethylhalosilanes 1, where X is phenoxide, have a PhO-Si bond length very close to that of a covalent O-Si bond and little distortion of the tetrahedral arrangement around silicon.⁶ Compound 10 provides a good model for 100% O-Si bond formation. The ¹³C chemical shifts of the ring carbons are similar to those of 2-methoxypyridinium salts.¹⁶ The only drawback with using 10 as the limiting case is that compound 2 with 100% Si-O bond formation involves formation of a five membered ring. This may lead to geometry changes in the aromatic ring that are not present in compound 10.

We have previously shown that when a 10% w/w solution of N-methyl-2-pyridone in CDCl₃ is titrated with successive amounts of trimethylsilyl trifluoromethanesulfonate, silylation is complete and exchange between the 2-pyridone to the pyridinium forms is fast on the NMR time scale.⁷ There is a good linear correlation between the ¹³C chemical shifts of each ring carbon and the mole fraction of the pyridinium form. However, the direction and extent of the change of the chemical shift varies greatly from one carbon to another. In calculating the extent of Si–O bond formation in compounds of the type 2, we have assumed that the ¹³C chemical shifts of the ring carbons vary in a linear fashion with the extent of Si-O bond formation between the two extremes of 0% bond formation, as represented by compound 9, and 100% bond formation, as represented by compound 10. The justification for this assumption is best demonstrated in the 6-chloro-2-pyridone system. Fig. 1 shows a plot of the extent of bond formation against the ¹³C chemical shifts of the ring carbons. The data show that on going from the 2-pyridone to the pyridinium forms the chemical shift of each position changes in a coherent fashion and can increase or decrease. In general for all the simple 2-pyridones studied, the chemical shifts of carbons 4, 5 and 6 increase with Si-O bond formation whereas that of carbon 3 often decreases. The increase arises from the shift in π electron density away from the ring towards the exocyclic oxygen on Si-O bond formation. The decrease at carbon 3 is not easy to explain. However, compared to the 1-alkyl-2-pyridone, a similar pattern is observed when boron trifluoride complexes with 2-methoxypyridine.16

Small deviations from the line are observed which may arise from experimental error, specific interactions within the model compound or a non-linear response of the chemical shift to the extent of bond formation. In each case the % Si–O bond formation has been estimated to give the best fit to the complete set of data. This can either be achieved visually or by calculating the % Si–O bond formation for each ¹³C resonance based on those observed with the limiting cases **9** and **10**. The weighted

Table 1% Si-O bond formation for each of the model compounds3-8 as calculated from the ¹³C chemical shifts of the ring carbons,
together with the % pentacoordination calculated from the ²⁹Si chemical
shifts

Compound	Y	Х	% Si–O bond formation	% Penta- coordination
3a	Н	F	30	74
3b	Н	Cl	50	102
3c	Н	Br	70	73
3d	Н	OTf	90	10
4a	5-Cl	F	30	63
4b	5-Cl	Cl	65	71
4c	5-Cl	Br	70	66
4d	5-Cl	OTf	90	19
5a	6-C1	F	40	79
5b	6-C1	Cl	50	101
5c	6-C1	Br	70	84
5d	6-C1	OTf	90	37
6a	6-Me	F	50	93
6b	6-Me	Cl	70	81
6c	6-Me	Br	70	77
6d	6-Me	OTf	90	21
7a	3-OMe	F	20	61
7b	3-OMe	Cl	45	88
7c	3-OMe	Br	72	68
7d	3-OMe	OTf	95	23
8a	3-NO ₂	F	12	23
8b	3-NO ₂	Cl	40	78
8c	3-NO ₂	Br	58	85
8d	3-NO ₂	OTf	80	44

average % Si–O bond formation is then calculated with weightings proportional to the size of the variation in the chemical shift. Using such techniques the uncertainty in the % Si–O bond formation is estimated to be approximately $\pm 5\%$.

The % Si-O bond formation for each of the model compounds 3–8 are given in Table 1. The extent of bond formation for each substituted 2-pyridone follows the expected order with the leaving group ability $TfO > Br > Cl > F.^{17,18}$ However, the % Si-O bond formation for each leaving group is modified by the substituent. Structures 11, 12 and 13 represent the various structural extremes. Structure 11 involves no O-Si bond formation and 13 complete O-Si bond formation with loss of the leaving group. In this latter structure there will be some build up of charge at the oxygen, but most of the charge will be located around the nitrogen. Structure 12 involves a pentacoordinate silicon with partial O-Si bond formation and Si-X bond cleavage. In this latter structure there is partial build up of positive charge on the nitrogen. Thus, substituents that stabilise the build up of positive charge at the nitrogen will favour O-Si bond formation. The 3-nitro group is strongly electron withdrawing, thus will resist the build up of positive charge at the nitrogen and thus, of all the substituents it has the lowest extent of bond formation for each leaving group. The 6-methyl group will stabilise the adjacent build up of positive charge and thus has the greater extent of bond formation. The orders of the extents of bond formation for each leaving group do vary a little, but the trend is 6 - Me > 5 - Cl > 6 - Cl > H > 3 - OMe > $3NO_2$

Interestingly the size of the variation in the % Si–O bond formation with leaving group decreases as the substituent changes from nitro through hydrogen to methyl. A similar picture emerges if one focuses on each leaving group and calculates the variation of the % Si–O bond formation with substituent. The triflate leaving group has the largest extent of bond formation and thus a relatively small change in the % Si–O bond formation is observed with substituent. On the other hand the fluoro leaving group has the smallest extent of bond formation and this leads to a larger range of % Si–O bond formation with substituent.

Fig. 2 % Pentacoordination versus the % Si–O bond formation.

In order to carry out a structural correlation it is necessary to have some measure of the coordination state of the silicon. This is measured using the ²⁹Si chemical shift. Again the conversion from chemical shift information to % pentacoordination requires the use of model compounds. In this instance three anchor points are required. One to model 0% pentacoordination involving 0% Si-O bond formation, compound 11, one to model 0% pentacoordination involving 100% Si-O bond formation, compound 13 and one to model 100% pentacordination, compound 12. The ²⁹Si NMR chemical shifts of Me₃SiCl, Me₃SiF and Me₃SiBr all appear within ± 2 ppm of ± 28 ppm and so this value was used to anchor the scale at 0% pentacoordination with 0% O-Si bond formation.15 The small variation of the chemical shift with leaving group confirms that the major arbiter of the ²⁹Si chemical shift is the coordination state at silicon. The X-ray crystal structure of 14 has been reported and shows one silicon to be tetracoordinated and the other completely pentacoordinated.^{4,19} We have measured the ²⁹Si chemical shifts in CDCl₃ and found that the tetracoordinate silicon gives rise to a resonance at 26.8 ppm whereas the pentacoordinate silicon gives rise to a resonance at -39.9 ppm. The value for the tetracoordinate silicon is within experimental error of the limiting value of 28 ppm. We have used the chemical shift of the pentacoordinate silicon to define 100% pentacoordination as a chemical shift of -40 ppm.²⁰ Formation of a fully pentacoordinate silicon in compound 12 should involve 50% Si–O bond formation. Compounds **3b** and **5b** both exhibit 50% Si-O bond formation and their ²⁹Si chemical shifts are both within 2 ppm of this proposed limiting value for a pentacoordinate silicon. The second tetrahedral limiting value, corresponding to compound 13, was set to +36 ppm based on the ²⁹Si chemical shift of O-trimethylsilylated N-methyl-2-hydroxypyridine. For compounds that exhibited a % Si-O bond formation between 0 and 50% the extent of pentacoordination was calculated using the limiting cases 11 and 12, that is +28 and -40 ppm respectively. For compounds that exhibited a % Si-O bond formation between 50 and 100%, the extent of pentacoordination was calculated using the limiting cases 12 and 13, that is -40 and +36 ppm respectively. Table 1 shows the % pentacoordination of compounds 3-8.

For each substituent, as the leaving group ability improves in the order fluoro, chloro, bromo and triflate, the % pentacoordination first increases then decreases. This change occurs earlier for substituents that stabilise the positive charge on nitrogen, that is those that favour Si–O bond formation. Fig. 2 shows how the % pentacoordination varies as a function of % Si–O bond formation. At first, as the extent of bond formation increases, the % pentacoordination gets larger as the compound moves from resembling **11** to resembling **12**. At 50% Si–O bond formation the maximum pentacoordination is observed. This is associated with the most negative ²⁹Si chemical shifts. As the extent of bond formation increases from this point, the leaving group becomes more detached and thus the % pentacoordination decreases. Eventually, the Si–O bond is completely formed and the leaving group lost with the silicon reverting to a completely tetrahedral structure, **13**. As expected the compounds with the poorest leaving group, the fluoro derivatives, lie on the left of the graph and show only an increase in % pentacoordination. The chloro derivatives are clustered around the point of full pentacoordination and the bromides exhibit about 70% Si–O bond formation with decreasing pentacoordination. Finally the triflates, which contain the best leaving group, show almost complete Si–O bond formation with little pentacoordination.

An alternative explanation is that rather than a continuum of structures from 11 through 12 to 13, the reaction mixture contains only 11, 12 and 13 in equilibrium. As the substituent and leaving group changes so the equilibrium position first moves from favouring 11 to favouring 12 and then 13. Such a series of equilibria would have to be rapid on the NMR timescale in order to give single sets of resonances in the NMR spectra of each nucleus. X-Ray crystallography demonstrates that a continuum of structures is possible in the solid state and thus we would assume that a similar variety is possible in the solution phase.⁴⁻⁶ This is supported by conductivity studies on solutions of the 2-pyridones in acetonitrile. If the equilibria hypothesis were correct, compounds with about 75% Si-O bond formation should conduct electricity since they will contain equal amounts of covalent 12 and ionic 13. However, none of the bromides studied exhibited any conductivity.

Kummer has recently shown that the ²⁹Si, ¹³C and ¹H NMR chemical shifts of the 2-pyridone derivatives **3b** and **3c** are dependent upon the temperature, solvent and concentration.²¹ For example, with **3c** in CDCl₃, the ²⁹Si chemical shift changes from -27.3 ppm at 80 °C to +3.3 ppm at -55 °C. Similarly, at 25 °C, the ²⁹Si chemical shift of **3c** is about -10 ppm in CDCl₃ and CD₃CN but -28 ppm in C₆D₅CN and -39.2 in C₆D₆. In CDCl₃ a ten-fold change in the concentration in chemical shift was explained in terms of a change in solvent parameters which disturbs the balance of **11**, **12** and **13** between the various equilibria.

Throughout this study we have carried out all NMR measurements at 25 °C and at constant concentration. As a result of solubility problems we were forced to use a range of solvents and solvent mixtures. However, the main solvents employed, CDCl₃ and CD₃CN, had similar solvent parameters such that the variation was kept to a minimum. For example, at 25 °C, Kummer has shown that 3b had a ²⁹Si chemical shift of -39.0in CDCl₃ and -42.1 in CD₃CN, whereas **3b** had a ²⁹Si resonance in CDCl₃ of -11.1 and in CD₃CN of -9.5. Thus any variation in the chemical shifts measured, and thus the % pentacoordination or Si-O bond formation, is relatively small and within the experimental error of the method ($\pm 5\%$). As evidence for this, the fluorides 3a-8a were measured in CDCl₃, yet the plot of % pentacoordination against % Si-O bond formation shows a similar scatter for the fluorides as for the other halogens, even though these latter compounds were measured in a range of solvents or solvent mixtures.

Just as specific interactions in the crystal lead to changes in bond lengths and bond angles so variations of the solvent parameters will be accompanied by changes in the bond lengths and bond angles of the pentacoordinate species in solution. For example, Kummer argues that variation in the acceptor properties of the solvent will disturb the equilibria through changes in the coordination of the solvent with the 'leaving group'. Such varying coordination will also affect the Si–X bond length and other geometric parameters. Thus, if variation of the solvent, concentration and temperature affect the solvent parameters such that the equilibria are disturbed, these must be accompanied by wholesale changes in the structure. If these changes in structure result in a coherent variation of the ¹³C and ²⁹Si chemical shifts, they remain valid models for use in our solution phase mapping technique. Using a range of measuring conditions only becomes a problem if the data is correlated with other inherent parameters such as Hammett sigma values and this may explain the variation in the magnitude and/or order with respect to the various substituents.

Voronkov has measured the IR stretching frequencies of (aroyloxymethyl)trifluorosilanes and shown that whilst the medium has a large effect on the frequencies, suggesting a change in bond orders, non-coordinated species could only be observed in the gas phase.22,23 Non-coordinated species could be observed in organic solvents with the mono- and di-fluoro analogues suggesting that the equilibrium between coordinated and non-coordinated species becomes important for compounds with low % pentacoordination.²⁴ IR studies on the corresponding lactams revealed the absence of uncoordinated species in solution as would be expected from the stronger coordination, however, the frequency was less susceptible to changes in the solvent. Nevertheless the warning suggested by Kummer is worth heeding and all further comparisons have been carried out at constant temperature, concentration and solvent.

Assuming 3–8 are discrete compounds, Fig. 2 represents a solution phase structure correlation for substitution at silicon. As the extent of reaction increases the nucleophile–silicon bond is formed at the expense of the leaving group forming a genuine pentacoordinate species followed by loss of the nucleophile. A similar picture has emerged in the solid state. However, this is the first time that such a process has been demonstrated in solution.

We were interested in extending the series to include related 2-pyridone structures. We thus prepared the 2-quinolone series **15a–d** using a similar methodology to that employed for

the 2-pyridones. However, the triflate derivative was prepared by reaction of the chloro derivative 15b with trimethylsily trifluoromethanesulfonate. We have found that pentacoordinate silicon species Si¹-X¹ undergo exchange with tetracoordinate silicon species Si^2-X^2 to give pentacoordinate Si^1-X^2 when X^1 is below X^2 in the series Cl < Br < TfO. Thus this provides an easier route to triflate derivatives than the use of chloromethyldimethylsilyl triflate. 8-Hydroxyquinoline has been used as a bidentate ligand for silicon,²⁵ tin²⁶ and antimony.²⁷ However, the 2 isomer has only been used as a ligand for rhenium.²⁴ Compounds 16 and 17 were used as model compounds to anchor the calculation of the % Si-O bond formation. Titration of 16 with aliquots of trimethylsilyl triflate gave a linear relationship between the ring ¹³C chemical shifts and the proportion of trimethylsilyl triflate added. After two equivalents of the triflate had been added, no further chemical shift change

Table 2 ~% Si–O bond formation and % pentacoordination for the 2-quinolones 15a-d

Compound	Leaving group	% Si–O bond formation	% Penta- coordination
15a	F	35	79
15b	Cl	63	97
15c	Br	78	79
15d	OTf	93	38

occurred and the NMR data were consistent with 17. For compounds 15a-d all of the aromatic ¹³C chemical shifts were used to calculate the % Si-O bond formation, however, in this compound the variation of the chemical shift was generally smaller than that observed with the 2-pyridones. The extent of Si-O bond formation is given in Table 2. To determine the extent of pentacoordination, values of 28 and -40 ppm were used to anchor the chemical shift scale to a tetrahedral silicon with no Si-O interaction and a fully pentacoordinate silicon respectively. O-Trimethylsilylated N-methyl-2-hydroxyquinoline has a ²⁹Si chemical shift of 12.2 ppm and this was used to anchor the scale to a tetrahedral silicon with 100% Si-O bond formation. Values for the % pentacoordination of 15a-d are also given in Table 2. Again, the same ordering of leaving groups is observed and as the % Si-O bond formation increases, the extent of pentacoordination first increases to a maximum and then decreases. The % Si-O bond formation for the 2quinolones is consistently higher than those of the corresponding unsubstituted 2-pyridones. This is the result of further delocalisation of the positive charge on formation of the quinolinium species. This data overlaps well with that shown in Fig. 1 for the simple 2-pyridones. However, above 50% Si-O bond formation, the extent of pentacoordination is consistently a little higher than that obtained with the 2-pyridone system. This may be a result of differences between the two series in the relationship between the chemical shift and the extent of Si-O bond formation. Alternatively, a 'tighter' pentacoordinate species may be formed in the 2-quinolone series where the loss of the leaving group is less advanced. To extend the series further we examined the diaza derivatives 18, 19 and 20. The electron withdrawing effect of an aza group is similar to that of a nitro group in the same position.²⁹ We might therefore expect 18b and c to have a similar structure to 8b and c respectively. Compound 18b has a ²⁹Si resonance at -33.7 ppm similar to that of **8b** at -25 ppm. Compound **18c** has a ²⁹Si resonance at -27.6 ppm very close to that of 8c, -27.9 ppm, confirming the similarity between the two series. The ²⁹Si chemical shift of 19b, the corresponding 5 isomer, is -16.7 ppm suggesting that in this position the nitrogen has a larger electron withdrawing influence. The ²⁹Si chemical shift of 20a (-6.1 ppm) and 20b (-27.1 ppm) are both less negative than the corresponding 2-quinolones (15a, -25.4 ppm and 15b, -38.3 ppm). This again suggests that electron withdrawal by the aza group at the 4 position decreases the extent of O-Si bond formation and pentacoordination. Comparison of the ²⁹Si chemical shifts suggests that electron withdrawal is not as great in 20a and b as in 19a and b. In this instance, the order of O-Si bond formation reflects that of O protonation.³⁰

We prepared the corresponding disiloxanes to use as model compounds for 0% Si–O bond formation. However, we were unable to titrate these compounds with trimethylsilyl triflate to form the *O*-trimethylsilylated derivatives, which were to act as models for 100% Si–O bond formation. In all cases the presence of the second aza group led to exchange of the trimethylsilyl group between the oxygen and the nitrogen leading to line broadening of the ring carbon signals or multiple peaks. Without an appropriate anchor for the ¹³C resonances of the ring carbons it was not possible to calculate the precise % Si–O bond formation. In conclusion we have successfully mapped substitution at silicon in solution using model compounds. We have examined the strengths and weaknesses of this NMR technique for a range of 2-pyridone ligands. In future publications we will explore the applicability of this technique to other ligands and nucleophilic systems.

Experimental

Melting points were determined on a Buchi 510 melting point apparatus and are uncorrected. Infrared spectra were obtained as Nujol mulls or thin films using sodium chloride plates or as KBr discs on a Pye Unicam SP1050 or a Nicolet 205 FT-IR spectrometer. NMR spectra were recorded as solutions in deuteriochloroform with tetramethylsilane as internal standard on a JEOL FX 90Q or a JEOL EX 400 NMR spectrometer (*J* values are given in Hz and the precision of the chemical shifts is appropriate for the subsequent calculations). All NMR Mass spectra were obtained using a Cresta MS 30 instrument or a VG20-250 quadrupole instrument.

Conductivity measurements

Conductivity measurements were carried out using a PTI-10 digital conductivity meter (quoted ±0.5%, repeatability ±1 digit). All experiments were perfomed under nitrogen. Calibration of the meter was checked by using a standard solution of potassium chloride. The compound whose conductivity was to be determined was dissolved in acetonitrile and introduced into the cell by a syringe. The conductivity of the following solutions were measured: "Bu₄NBr (0.23 g, 7 ml, CH₃CN, 0.1 M solution) 182 μ S cm⁻¹; **3c** (X = Br, Y = H) (0.17 g, 7 ml, CH₃CN, 0.1 M solution) 8 μ S cm⁻¹; **3d** (X = OTf, Y = H) (0.22 g, 7 ml, CH₃CN, 0.1 M solution) 29 μ S cm⁻¹.

General procedure for the silylation of 2-pyridones with diethylaminotrimethylsilane¹³

2-Pyridone (25 mmol) was dissolved in 10 ml of benzene. Diethylaminotrimethylsilane (25 mmol) was added to the reaction mixture and refluxed for 5 h under nitrogen. The volatile materials were removed under reduced pressure and the product isolated by distillation. The siloxypyridines were used for the synthesis of silyl-2-pyridones without any characterisation other than NMR.

The following siloxypyridines were obtained:

2-Trimethylsiloxypyridine. 3.0 g, 72%, bp 37 °C/1 mmHg; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.35 (9H, s, SiMe₃) and 6.6–8.1 (4H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.52 (SiMe₃), 112.3 (C3), 116.2 (C 5), 138.3 (C4), 146.7 (C6) and 162.2 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 19.9.

6-Methyl-2-trimethylsiloxypyridine. 2.9 g, 65%, bp 45 °C /0.2 mmHg; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.34 (9H, s, SiMe₃), 2.33 (3H, s, Me) and 6.4–7.4 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.57 (SiMe₃), 24.0 (Me), 109.2 (C3), 115.6 (C5), 139.0 (C4), 156.2 (C6) and 162.2 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 19.3.

3-Methoxy-2-trimethylsiloxypyridine. 3.9 g, 80%, bp 66 °C/ 0.5 mmHg; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.36 (9H, s, SiMe₃), 3.75 (3H, s, OMe) and 6.8–7.7 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) –0.57 (SiMe₃), 55.0 (OMe), 116.6 (C5), 117.8 (C4), 137.0 (C6), 144.4 (C3) and 152.5 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 20.7.

5-Chloro-2-trimethylsiloxypyridine. 4.2 g, 84%, bp 60 °C/2 mmHg; $\delta_{\rm H}$ (90 MHz, CD₃CN, Me₄Si) 0.34 (9H, s, SiMe₃) and 6.5–8.1 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CD₃CN, Me₄Si) –0.23

(SiMe₃), 110.6 (C3), 116.2 (C4), 140.7 (C6), 147.9 (C5) and 161.8 (C2); δ_{si} (17.8 MHz, CD₃CN, Me₄Si) 21.4.

3-Nitro-2-trimethylsiloxypyridine. 4.2 g, 79%, bp 92 °C/0.5 mmHg; $\delta_{\rm H}$ (90 MHz, CD₃CN, Me₄Si) 0.40 (9H, s, SiMe₃) and 7.0–8.3 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CD₃CN, Me₄Si) –0.34 (SiMe₃), 116.9 (C5), 134.8 (C4), 142.5 (C3), 151.6 (C6) and 154.7 (C2); $\delta_{\rm Si}$ (17.8 MHz, CD₃CN, Me₄Si) 25.5.

6-Chloro-2-trimethylsiloxypyridine. 4.3 g, 85%, bp 67 °C/3 mmHg; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.36 (9H, s, SiMe₃) and 6.5–7.6 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) –0.29, 113.5 (C3), 123.8 (C4), 138.4 (C5), 145.3 (C6) and 160.8 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 22.4.

General procedure for the synthesis of chlorodimethylsilylmethyl-2-pyridones

Chloromethyldimethylchlorosilane, (0.3 g, 2.5 mmol) in dry diethyl ether was added slowly to a stirred solution of 2-trimethylsiloxypyridine (2.5 mmol) in dry diethyl ether under nitrogen. The reaction mixture was stirred for 1 h. The solid was filtered under nitrogen and dried under vacuum.

The following chlorodimethylsilylmethyl-2-pyridones were obtained:

1-(Chlorodimethylsilylmethyl)-2-pyridone 3b. 0.43 g, 87%, mp 91–94 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.64 (6H, s, SiMe₂), 3.7 (2H, s, NCH₂) and 6.8–7.9 (4H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 7.5 (SiMe₂), 42.2 (SiCH₂), 113.6 (C5), 115.8 (C3), 140.0 (C4), 143.3 (C6) and 160.1 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) –41.1 (Found: C, 47.79; H, 6.06; N, 6.78; Cl, 17.14. C₈H₁₂NOClSi requires C, 47.63; H, 6.01; N, 6.94; Cl, 17.57%).

1-(Chlorodimethylsilylmethyl)-6-methyl-2-pyridone 6b. 0.40 g, 84%, mp 99–104 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.53 (6H, s, SiMe₂), 2.7 (3H, s, Me) 3.7 (2H, s, NCH₂) and 6.8–8.0 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.21 (SiMe₂), 20.6 (Me), 37.8 (SiCH₂), 111.3 (C5), 115.6 C3), 144.8 (C6), 151.0 (C4) and 163.4 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –24.7 (Found: C, 49.90; H, 6.46; N, 6.42; Cl, 16.50. C₉H₁₄NOClSi requires C, 50.10; H, 6.54; N, 6.49; Cl, 16.43%).

1-(Chlorodimethylsilylmethyl)-5-chloro-2-pyridone 4b. 0.56 g, 88%, mp 99–106 °C; $\delta_{\rm H}$ (90 MHz, CD₃OD, Me₄Si) 0.46 (6H, s, SiMe₂), 4.0 (2H, s, NCH₂) and 7.2–8.4 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CD₃OD, Me₄Si) 1.2 (SiMe₂), 43.0 (SiCH₂), 116.2 (C5), 120.8 (C3), 138.2 (C6), 144.7 (C4) and 160.9 (C2); $\delta_{\rm si}$ (17.8 MHz, CD₃OD, Me₄Si) –17.1; *m*/*z* (EI) 235/237/239 (10:6:1, M⁺), 220/222/224 (10:6:1, M⁺ – Me), 200/202 (3:1, M⁺ – Cl), 165 (M⁺ – 2Cl) (Found: C, 40.54; H, 4.72; N, 5.92 C₈H₁₁-NOCl₂Si requires C, 40.69; H, 4.69; N, 5.93%).

1-(Chlorodimethylsilylmethyl)-3-nitro-2-pyridone 8b. 0.51 g, 77%, mp 96–100 °C; $\delta_{\rm H}$ (90 MHz, CD₃CN, Me₄Si) 0.50 (6H, s, SiMe₂), 3.7 (2H, s, NCH₂) and 6.7–8.4 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CD₃CN, Me₄Si) 0.57 (SiMe₂), 43.8 (SiCH₂), 105.9 (C5), 136.7 (C3), 140.1 (C6), 146.4 (C4) and 156.6 (C2); $\delta_{\rm Si}$ (17.8 MHz, CD₃CN, Me₄Si) –25.0; *m/z* (EI) 246/248 (3:1, M⁺),

2104 J. Chem. Soc., Perkin Trans. 2, 1999, 2099–2109

231/233 (3:1, $M^+ - Me$), 211, 185/187 (3:1, $M^+ - NO_2$), 165 ($M^+ - ClNO_2$) (Found: C, 39.21; H, 4.52; N, 11.39. $C_8H_{11}N_2$ -O₃ClSi requires 38.95; H, 4.49; N, 11.35%).

1-(Chlorodimethylsilylmethyl)-6-chloro-2-pyridone 5b. 0.47 g, 85%, mp 99–101 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.67 (6H, s, SiMe₂), 3.7 (2H, s, NCH₂) and 6.8–7.8 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 7.3 (SiMe₂), 42.3 (SiCH₂), 112.5 (C5), 113.1 (C3), 140.5 (C4), 143.0 (C6) and 164.2 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) –40.9; *m*/*z* (EI) 235/237/239 (10:6:1, M⁺), 220/222/224 (10:6:1, M⁺ – Me), 202/204 (3:1, M⁺ – Cl), 165 (M⁺ – 2Cl) (Found: C, 40.80; H, 4.63; N, 6.27. C₈H₁₁-NOCl₂Si requires C, 40.69; H, 4.69; N, 5.93%).

General procedure for the synthesis of bromodimethylsilylmethyl-2-pyridones

The synthesis was identical to that for the synthesis of chlorodimethylsilylmethyl-2-pyridones except that chloromethyldimethylchlorosilane was replaced by bromomethyldimethylchlorosilane (0.32 g, 2.5 mmol).

The following bromodimethylsilylmethyl-2-pyridones were obtained:

1-(Bromodimethylsilyl)methyl-2-pyridone 3c. 0.44 g, 86%, mp 102–104 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.72 (6H, s, SiMe₂), 3.9 (2H, s, NCH₂) and 6.9–8.1 (4H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.9 (SiMe₂), 44.8 (SiCH₂), 115.0 (C3), 115.7 (C5), 141.0 (C4), 146.1 (C6) and 163.1 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –18.4; *m*/*z* (EI) 166 (M⁺ – Br), 136 (M⁺ – BrMe₂), 106, 78 (Found: C, 38.95; H, 4.76; N, 5.51. C₈H₁₂NOBrSi requires C, 39.01; H, 4.92; N, 5.69%).

1-(Bromodimethylsilylmethyl)-6-methyl-2-pyridone 6c. 0.54 g, 87%, bp 108–111 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.45 (6H, s, SiMe₂), 2.7 (3H, s, Me), 3.7 (2H, s, NCH₂) and 6.8–8.0 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.7 (SiMe₂), 20.7 (Me), 37.9 (SiCH₂), 111.5 (C5), 115.2 (C3), 144.8 (C6), 151.6 (C4) and 163.7 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –21.3 (Found: C, 41.67; H, 5.37; N, 5.40. C₉H₁₄NOBrSi requires C, 41.54; H, 5.42; N, 5.38%).

1-(Bromodimethylsilylmethyl)-3-methoxy-2-pyridone 7c. 0.45 g, 90%, mp 105–108 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.73 (6H, s, SiMe₂), 4.0 (3H, s, OMe), 4.2 (2H, s, NCH₂) and 7.1–7.9 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) –0.63 (SiMe₂), 44.9 (Me), 58.0 (SiCH₂), 116.1 (C5), 122.1 (C3), 132.1 (C6), 147.3 (C4) and 154.9 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) –14.3.

1-(Bromodimethylsilylmethyl)-5-chloro-2-pyridone 4c. 0.65 g, 88%, mp 107–112 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.44 (6H, s, SiMe₂), 4.4 (2H, s, NCH₂) and 7.4–8.6 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) –0.34 (SiMe₂), 42.9 (SiCH₂), 115.8 (C5), 122.0 (C3), 138.9 (C6), 145.4 (C4) and 160.3 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –12.7; *m/z* (EI) 279/281/283 (3:4:1, M⁺), 264/266/268 (3:4:1, M⁺ – Me), 200/202 (3:1, M⁺ – Br), 186/188 (3:1, M⁺ – MeBr) (Found: C, 34.00; H, 4.09; N, 4.99. C₈H₁₁NOClBrSi requires C, 34.24; H, 3.95; N, 4.99%).

1-(Bromodimethylsilylmethyl)-3-nitro-2-pyridone 8c. 0.69 g, 90%, mp 110–112 °C; $\delta_{\rm H}$ (90 MHz, CD₃CN, Me₄Si) 0.76 (6H, s, SiMe₂), 3.9 (2H, s, NCH₂) and 7.1–8.7 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CD₃CN, Me₄Si) 1.5 (SiMe₂), 45.0 (SiCH₂), 111.2 (C5), 135.7 (C3), 141.4 (C6), 146.5 (C4) and 157.(C2); $\delta_{\rm Si}$ (17.8 MHz, CD₃CN, Me₄Si) –27.9; *m/z* (EI) 292/290 (1:1, M⁺), 211 (M⁺ – Br), 181 (M⁺ – BrMe₂).

1-(Bromodimethylsilylmethyl)-6-chloro-2-pyridone 5c. 0.60 g, 88%, mp 105–109 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.55 (6H, s, SiMe₂), 3.9 (2H, s, NCH₂) and 6.8–8.1 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.7 (SiMe), 40.1 (SiCH₂), 113.0 (C5),

114.7 (C3), 141.3 (C4), 144.7 (C6) and 163.8 (C2); δ_{si} (17.8 MHz, CDCl₃, Me₄Si) -27.4; m/z (EI) 279/281/283 (3:4:1, M⁺), 264/266/268 (3:4:1), 200/202 (3:1), 186/188 (3:1) (Found: C, 34.58; H, 4.22; N, 4.99. C₈H₁₁NOClBrSi requires C, 34.24; H, 3.95; N, 4.99%).

General procedure for the synthesis of fluorodimethylsilylmethyl-2-pyridones

Chloromodimethylsilylmethyl-2-pyridone (5 mmol) was dissolved (or suspended) in 5 ml dry benzene under nitrogen. Antimony trifluoride (0.30 g, 1.7 mmol) was added and the reaction mixture was stirred for 0.5 h. The reaction mixture was then diluted with excess water and extracted with chloroform (3×75 ml). The washed extract was dried over anhydrous magnesium sulfate and the solvent removed using a rotary evaporator to obtain a colourless crystalline solid, which was dried under vacuum.

The following fluorodimethylsilylmethyl-2-pyridones were obtained:

1-(Fluorodimethylsilylmethyl)-2-pyridone 3a. 0.57 g, 92%, mp 82–86 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.32 (6H, d, ${}^{3}J_{\rm HSIF}$ 6.8, SiMe₂), 3.2 (2H, s, NCH₂) and 6.5–7.7 (4H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.8 (d, ${}^{2}J_{\rm CSIF}$ 25, SiMe), 39.5 (d, ${}^{2}J_{\rm CSIF}$ 44.0, SiCH₂), 109.2 (C5), 116.8 (C3), 139.1 (C4), 141.4 (C6) and 163.2 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) –22.3 (d, ${}^{1}J_{\rm SIF}$ 256.8); *m*/*z* (EI) 185 (M⁺), 184, 170, 166 (Found: C, 51.60; H, 6.51; N, 7.45. C₈H₁₂NOFSi requires C, 51.86; H, 6.53; N, 7.56%).

1-(Fluorodimethylsilylmethyl)-6-methyl-2-pyridone 6a. 0.61 g, 91%, mp 87–89 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.28 (6H, d, ${}^{3}J_{\rm HSiF}$ 5.9, SiMe₂), 2.5 (3H, s, Me), 3.0 (2H, s, NCH₂) and 6.5–7.5 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 2.4 (d, ${}^{2}J_{\rm CSiF}$ 27.2, SiMe), 20.9, 35.8 (d, ${}^{2}J_{\rm CSiF}$ 50.5, SiCH₂), 110.2 (C5), 112.5 (C3), 141.2 (C6), 148.6 (C4) and 163.8 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –35.5 (d, ${}^{1}J_{\rm SiF}$ 252.9) (Found: C, 54.26; H, 7.11; N, 6.96. C₉H₁₄NOFSi requires C, 54.24; H, 7.08; N, 7.03%).

1-(Fluorodimethylsilylmethyl)-3-methoxy-2-pyridone 7a. 0.66 g, 92%, mp 88–92 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.35 (6H, d, ${}^{3}J_{\rm HSiF}$ 5.1, SiMe₂), 3.3 (2H, s, NCH₂), 3.9 (3H, s, OMe) and 6.2–6.4 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.4 (d, ${}^{2}J_{\rm CSiF}$ 23.3, SiMe), 40.2 (d, ${}^{2}J_{\rm CSiF}$ 40.2, SiCH₂), 56.1 (OMe), 107.7 (C5), 114.6 (C3), 129.7 (C6), 148.3 (C4) and 158.3 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –13.5 (d, ${}^{1}J_{\rm SiF}$ 258.8) (Found: C, 50.02; H, 6.64; N, 6.39. C₉H₁₄NO₂FSi requires C, 50.21; H, 6.55; N, 6.51%).

1-(Fluorodimethylsilylmethyl)-5-chloro-2-pyridone 4a. 0.66 g, 90%, mp 91–95 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.31 (6H, d, ${}^{3}J_{\rm CSiF}$ 7.8, SiMe₂), 3.2 (2H, s, NCH₂) and 6.7–7.7 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.2 (d, ${}^{2}J_{\rm CSiF}$ 19.4, SiMe), 40.4 (d, ${}^{2}J_{\rm CSiF}$ 41.4, SiCH₂), 115.0 (C5), 118.0 (C3), 137.0 (C6), 142.1 (C4) and 161.9 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –14.6 (d, ${}^{1}J_{\rm SiF}$ 259.8); *m/z* (EI) 219/221 (3:1, M⁺), 218/220 (3:1, M⁺ – H), 204/206 (3:1, M⁺ – Me), 184 (M⁺ – MeF) (Found: C, 43.26; H, 5.00; N, 6.07. C₈H₁₁NOFClSi requires C, 43.73; H, 5.05; N, 6.37%).

1-(Fluorodimethylsilylmethyl)-3-nitro-2-pyridone 8a. 0.69 g, 90%, mp 87–90 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.38 (6H, d, ${}^{3}J_{\rm CSIF}$ 7.8, SiMe₂), 3.6 (2H, s, NCH₂) and 6.4–8.4 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) –0.52 (d, ${}^{2}J_{\rm CSIF}$ 18.1, SiMe), 42.7 (d, ${}^{2}J_{\rm CSIF}$ 29.8, SiCH₂), 105.1 (C5), 137.4 (C3), 145.9 (C4) and 155.6 (C2); $\delta_{\rm SI}$ (17.8 MHz, CDCl₃, Me₄Si) 12.5 (d, ${}^{1}J_{\rm SIF}$ 272.5) (Found: C, 42.01; H, 4.95: N, 11.83. C₈H₁₁N₂O₃FSi requires C, 41.72;H, 4.82; N, 12.17%).

1-(Fluorodimethylsilylmethyl)-6-chloro-2-pyridone 5a. 0.68 g, 92%, mp 90–95 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.31 (6H, br s,

SiMe₂), 3.2 (2H, s, NCH₂) and 6.6–7.6 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.9 (d, ²J_{CSiF} 19.4, SiMe), 38.0 (d, ²J_{CSiF} 46.6 Hz, SiCH₂), 109.8 (C5), 114.3 (C3), 140.4 (C6), 141.0 (C4) and 164.1 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) –26.0 (d, ¹J_{SiF} 257.8); *m*/*z* (EI) 219/221 (3:1, M⁺), 218/220 (3:1, M⁺ – H), 204/206 (3:1, M⁺ – Me), 184 (M⁺ – FMe) (Found: C, 43.10; H, 5.00; N, 6.21. C₈H₁₁NOClFSi requires C, 43.73; H, 5.05; N, 6.37%).

General procedure for the synthesis of trifluoromethylsulfonyloxydimethylsilylmethyl-2-pyridone

The synthesis was identical to that for the synthesis of chlorodimethylsilylmethyl-2-pyridones except that chloromethyldimethylchlorosilane was replaced by chloromethyldimethylsilyl triflate (0.62 g, 2.5 mmol).

Chloromethyldimethylsilyl triflate. Trifluoromethanesulfonic acid (5 ml, 37.8 mmol) was added to 3.34 ml (37.8 mmol) chloromethyldimethylchlorosilane, with stirring under nitrogen. The reaction mixture was heated at 60 °C for 5 h. The product was isolated by distillation. (8.6 g, 89%), bp 62 °C/8 mmHg; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.60 (6H, s, SiMe₂) and 3.0 (2H, s, CH₂); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) -3.0 (SiMe₂), 27.6 (SiCH₂) and 118.9 (q, ¹J_{CF} 317.1, CF₃); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) 31.7; *m*/*z* (EI) 256/258 (3:1, M⁺), 207 (M⁺ – MeCl), 191 (M⁺ – ClMe₂) (Found: C, 18.95; H, 3.13. C₄H₈O₃C1F₃SSi requires C, 18.71; H, 3.15%).

The following dimethylsilylmethyl-2-pyridone triflates were obtained:

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-2-pyridone 3d. 0.63 g, 88%, mp 120–123 °C; $\delta_{\rm H}$ (90 MHz, CD₃CN, Me₄Si) 0.66 (6H, s, SiMe₂), 4.0 (2H, s, NCH₂) and 7.2–8.3 (4H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CD₃CN, Me₄Si) 0.17 (SiMe₂), 42.8 (SiCH₂), 115.2 (C5), 118.3 (C3), 142.3 (C4), 147.5 (C6) and 162.9 (C2); $\delta_{\rm Si}$ (17.8 MHz, CD₃CN, Me₄Si) 32.3.

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-6-methyl-2pyridone 6d. 0.69 g, 90%, mp 128–132 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.64 (6H, s, SiMe₂), 2.6 (3H, s, Me), 3.8 (2H, s, NCH₂) and 7.0–8.1 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 3.2 (SiMe₂), 20.5 (Me), 39.8 (SiCH₂), 111.5 (C5), 117.9 (C3), 121.0 (q, ¹J_{CF} 321.0, CF₃), 146.1 (C6), 152.7 (C4) and 163.0 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 23.0 (Found: C, 36.52; H, 4.48; N, 4.80. C₁₀H₁₄NSF₃O₄Si requires C, 36.46; H, 4.28; N, 4.25%).

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-3-

methoxy-2-pyridone 7d. 1.1 g, 85%, mp 127–130 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.69 (6H, s, SiMe₂), 3.9 (3H, s, OMe), 4.0 (2H, s, NCH₂) and 7.1–7.9 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 3.1 (SiMe₂), 42.9 (SiCH₂), 57.2 (OMe), 116.9 (C5), 120.3 (q, {}^{1}J_{\rm CF} 319.2, CF₃), 123.5 (C3), 131.3 (C6), 146.5 (C4) and 155.8 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 21.3 (Found: C, 34.92; H, 3.92; N, 4.10. C₁₀H₁₄NSF₃O₅Si requires C, 34.78; H, 4.09; N, 4.06%).

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-5-chloro-2-pyridone 4d. 0.74 g, 88%, mp 136–139 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.67 (6H, s, SiMe₂), 4.0 (2H, s, NCH₂) and 7.1–8.3 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.7 (SiMe₂), 41.5 (SiCH₂), 115.8 (C5), 118.8 (q, ¹J_{CF} 319.7, CF₃), 123.9 (C3), 139.6 (C6), 147.0 (C4) and 61.8 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) 25.2; *m*/z (EI) 349/351 (3:1, M⁺), 334/336 (3:1, M⁺ – Me), 200/202 (M⁺ – CF₃SO₃) (Found: C, 31.02; H, 3.32; N, 4.27. C₉H₁₁O₄F₃CINSSi requires C, 30.90; H, 3.17; N, 4.00%)

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-3-nitro-2pyridone 8d. 0.80 g, 89%, mp 129–131 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.66 (6H, s, SiMe₂), 4.0 (2H, s, NCH₂) and 7.2–8.8 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 3.2 (SiMe₂), 42.1 (SiCH₂), 114.8 (C5), 120.3 (q, ¹J_{CF} 319.4, CF₃), 135.5 (C3), 142.4 (C6), 147.4 (C4) and 158.0 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 4.5 (Found: C, 29.96; H, 3.64; N, 8.86. C₉H₁₁OF₃N₂SSi requires C, 30.0; H, 3.08; N, 7.78%).

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-6-chloro-

2-pyridone 5d. 1.3 g, 92%, mp 135–140 °C; $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.65 (6H, s, SiMe₂), 3.9 (2H, s, NCH₂) and 7.2–8.0 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.7 (SiMe₂), 41.8 (CH₂), 112.8 (C5), 116.8 (C3), 120.3 (q, ¹J_{CF} 319.7, CF₃), 142.8 (C6) 146.4, (C4) and 165.0 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) 10.7; *m*/z (EI) 349/351 (3:1, M⁺), 334/336 (3:1, M⁺ – Me) and 200/202 (3:1, M⁺ – Tf) (Found: C, 31.56; H, 3.21; N, 4.49. C₉H₁₁O₄F₃CINSSi requires C, 30.90; H, 3.17; N, 4.00%).

General procedure for the synthesis of 1,1,3,3-tetramethyl-1,3bis(2-oxo-1,2-dihydro-1-pyridylmethyl)disiloxane

The corresponding chlorodimethylsilylmethyl-2-pyridone (0.5 g) was added to 1 ml of distilled water. The reaction mixture was stirred for 1 h and then extracted with chloroform (3×75 ml). The washed extract was dried over anhydrous magnesium sulfate and distilled under reduced pressure and dried under vacuum.

The following disiloxanes were obtained:

1,1,3,3-Tetramethyl-1,3-bis(2-oxo-1,2-dihydro-1-pyridyl-

methyl)disiloxane. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.16 (6H, s, SiMe₂) 3.4 (2H, s, NCH₂) and 6.0–7.2 (4H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.63 (SiMe₂), 42.4 (SiCH₂), 105.6 (C5), 119.7 (C3), 138.3 (C4), 138.6 (C6) and 162.2 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 4.2.

1,1,3,3-Tetramethyl-1,3-bis(6-methyl-2-oxo-1,2-dihydro-1pyridylmethyl)disiloxane. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.29 (6H, s, SiMe₂), 2.5 (3H, s, Me), 3.5 (2H, s, NCH₂) and 6.3 –7.4 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 2.20 (SiMe₂), 21.4 (Me), 38.2, (SiCH₂), 109.6 (C5), 114.2 (C3), 139.9 (C6), 147.5 (C4) and 163.2 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 4.2.

1,1,3,3-Tetramethyl-1,3-bis(3-methoxy-2-oxo-1,2-dihydro-1-pyridylmethyl)disiloxane. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.20 (6H, s, SiMe₂), 3.6 (2H, s, NCH₂) 3.8 (3H, s, OMe) and 6.1–6.9 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.40 (SiMe₂), 55.8 (OMe), 42.7 (SiCH₂), 105.1 (C5), 112.2 (C3), 129.3 (C6), 149.7 (C4) and 157.8 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 3.4.

1,1,3,3-Tetramethyl-1,3-bis(5-chloro-2-oxo-1,2-dihydro-1-

pyridylmethyl)disiloxane. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.20 (6H, s, SiMe₂), 3.8 (2H, s, NCH₂) and 6.2–7.2 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.51 (SiMe₂), 43.1, (SiCH₂), 112.4 (C5), 120.5 (C3), 136.0 (C6), 139.9 (C4) and 160.9 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 3.5.

1,1,3,3-Tetramethyl-1,3-bis(3-nitro-2-oxo-1,2-dihydro-1pyridylmethyl)disiloxane. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.15 (6H, s, SiMe₂), 3.7 (2H, s, NCH₂) and 6.3–8.3 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.57 (SiMe₂), 44.5, (SiCH₂), 103.7 (C5), 138.2 (C3), 138.2 (C6), 146.1 (C4) and 154.9 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 5.0.

1,1,3,3-Tetramethyl-1,3-bis(6-chloro-2-oxo-1,2-dihydro-1-

pyridylmethyl)disiloxane. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.20 (6H, s, SiMe₂), 3.8 (2H, s, NCH₂) and 6.4–7.2 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.92 (SiMe₂), 39.8, (SiCH₂), 106.9 (C5), 117.0 (C3), 137.9 (C6), 137.9 (C4) and 162.8 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 3.5.

General procedure for the synthesis of 1,1,3,3-tetramethyl-1,3bis(2-trimethylsiloxypyridiniomethyl)disiloxane ditriflate

The corresponding 1,1,3,3-tetramethyl-1,3-bis(2-oxo-1,2-dihydro-1-pyridylmethyl)disiloxane (2.0 mmol) was dissolved in 2.0 ml of deuterochloroform in a 5 mm NMR tube. Aliquots of trimethylsilyl triflate were added and the NMR spectra obtained. The NMR spectrum did not significantly change after addition of 1 equiv. of trimethylsilyl triflate.

The following disiloxanes were obtained:

1,1,3,3-Tetramethyl-1,3-bis(2-trimethylsiloxypyridinio-

methyl)disiloxane ditriflate. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.21 (6H, s, SiMe₂) 4.0 (2H, s, NCH₂) and 7.2–8.3 (4H, m, arom); $\delta_{\rm C}$ (22.5, CDCl₃, Me₄Si) 0.40 (SiMe₂), 42.5, (SiCH₂), 115.1 (C5), 117.8 (C3), 119.0 (¹J_{CF} 317.0, CF₃), 141.5 (C4), 146.9 (C6) and 162.5 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 2.5.

1,1,3,3-Tetramethyl-1,3-bis(6-methyl-2-trimethylsiloxy-

pyridiniomethyl)disiloxane ditriflate. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.20 (6H, s, SiMe₂), 2.6 (3H, s, Me), 3.8 (2H, s, NCH₂) and 7.0–7.9 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 2.00 (SiMe₂), 20.8 (Me), 39.9, (SiCH₂), 111.6 (C5), 116.9 (C3), 119 ($^{1}J_{\rm CF}$ 318.1, CF₃), 145.1 (C6), 151.3 (C4) and 162.7 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 7.4.

1,1,3,3-Tetramethyl-1,3-bis(3-methoxy-2-trimethylsiloxy-

pyridiniomethyl)disiloxane ditriflate. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.20 (6H, s, SiMe₂), 4.0 (2H, s, NCH₂), 4.0 (3H, s, OMe) and 7.2–7.7 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.98 (SiMe₂), 42.8, (SiCH₂), 57.2 (OMe), 116.6 (C5), 119.5 (¹*J*_{CF} 318.4, CF₃), 122.7 (C3), 130.8 (C6), 146.6 (C4) and 156.0 (C2); $\delta_{\rm si}$ (17.8 MHz, CDCl₃, Me₄Si) 9.5.

1,1,3,3-Tetramethyl-1,3-bis(5-chloro-2-trimethylsiloxypyridiniomethyl)disiloxane ditriflate. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.10 (6H, s, SiMe₂), 4.1 (2H, s, NCH₂) and 7.1–8.2 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 0.80 (SiMe₂), 42.9, (SiCH₂), 115.5 (C5), 119.0 (¹J_{CF} 318.0, CF₃), 123.5 (C3), 139.0 (C6), 146.4 (C4) and 161.6 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 7.2.

1,1,3,3-Tetramethyl-1,3-bis(3-nitro-2-trimethylsiloxy-

pyridiniomethyl)disiloxane ditriflate. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.10 (6H, s, SiMe₂), 3.9 (2H, s, NCH₂) and 7.2–8.8 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 42.4, (SiCH₂), 114.3 (C5), 120.0 (¹*J*_{CF} 318.4, CF₃), 135.8 (C3), 142.4 (C6), 146.9 (C4) and 158.1 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 2.6.

1,1,3,3-Tetramethyl-1,3-bis(6-chloro-2-trimethylsiloxy-

pyridiniomethyl)disiloxane ditriflate. $\delta_{\rm H}$ (90 MHz, CDCl₃, Me₄Si) 0.10 (6H, s, SiMe₂), 3.9 (2H, s, NCH₂) and 7.1–8.1 (3H, m, arom); $\delta_{\rm C}$ (22.5 MHz, CDCl₃, Me₄Si) 1.61 (SiMe₂), 41.5, (SiCH₂), 113.3 (C5), 116.3 (C3), 119.0 (¹J_{CF} 318.0, CF₃), 141.8 (C6), 145.8 (C4) and 161.0 (C2); $\delta_{\rm Si}$ (17.8 MHz, CDCl₃, Me₄Si) 7.2.

1-(Fluorodimethylsilylmethyl)-2-quinolone 15a

1-(Chlorodimethylsilylmethyl)-2-quinolone (**15b**) (0.75 g, 2.98 mmol) was dissolved in benzene (4 cm³) under a nitrogen atmosphere. Granular antimony trifluoride (0.18 g, 1.01 mmol) was introduced and the reagents stirred together for 1 hour at room temperature. The organic phase was decanted from the oily antimony-containing by-products and hydrolysed by shaking with distilled water (50 cm³). The organic phase was extracted into dichloromethane (3 × 50 cm³). The extracts were combined and dried over magnesium sulfate and the solvents removed by rotary evaporation. The remaining solid was recrystallised from chloroform to give the pure product (0.40 g, 57%); $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.38 [6H, d, J 6.4,

Si(CH₃)₂], 3.18 (2H, s, N-CH₂), 6.82 (1H, d, J 9.4, H3), 7.38 (1H, m, H6), 7.73–7.64 (3H, m, H5/H7/H8) and 7.95 (1H, d, J 9.4, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 2.0 [d, J 23.8, Si(CH₃)₂], 33.9 (d, J 47.5, N-CH₂), 115.9 (C8), 117.1 (C3), 121.4 (C4a), 123.6 (C6), 129.0 (C5), 131.8 (C7), 139.3 (C8a), 141.4 (C4) and 162.9 (C2); $\delta_{\rm F}$ (90 MHz, CDCl₃) – 114.2; $\delta_{\rm Si}$ (79 MHz, CDCl₃, Me₄Si) 25.4 (d, J 254.3); *m*/z 235 (M⁺, 35%), 234 (M⁺ – H, 100), 220 (M⁺ – CH₃, 99) (Found: C, 60.83; H, 5.98; N, 5.86. C₁₂H₁₄FNOSi requires C, 61.25; H, 6.00; N, 5.95%).

1-(Chlorodimethylsilylmethyl)-2-quinolone 15b

A solution of 2-(trimethylsiloxy)quinoline³¹ (0.65 g, 2.99 mmol) was prepared in benzene (4 cm³) under a nitrogen atmosphere. Chloro(chloromethyl)dimethylsilane (0.44 g, 2.66 mmol) was added drop-wise with stirring and the solution allowed to stand for 30 minutes at room temperature. After removal of the solvent the product was recrystallised from acetonitrile to give colourless needle-like crystals (0.67 g, 89%); δ_H (400 MHz, CDCl₃, Me₄Si) 0.75 [6H, s, Si(CH₃)₂], 3.65 (2H, s, N-CH₂), 6.93 (1H, d, J 9.2, H3), 7.49 (1H, m, H6), 7.83-7.77 (3H, m, H5/H7/H8) and 8.09 (1H, d, J 9.2, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 7.4 [Si(CH₃)₂], 38.6 (N-CH₂), 115.4 (C3), 116.5 (C8), 121.9 (C4a), 124.8 (C6), 129.3 (C5), 132.7 (C7), 138.1 (C8a), 143.1 (C4) and 163.4 (C2); δ_{si} (79 MHz, CDCl₃, Me₄Si) -38.4; *m*/*z* 253 (M⁺, 13), 252 (M⁺ - H, 40), 251 (M⁺, 37), 250 $(M^+ - H, 100), 238 (M^+ - CH_3, 31), 236 (M^+ - CH_3, 76)$ (Found: C, 57.15; H, 5.86; N, 5.35. C₁₂H₁₄ClNOSi requires C, 57.24; H, 5.60; N, 5.56%).

1-(Bromodimethylsilylmethyl)-2-quinolone 15c

A solution of 2-(trimethylsiloxy)quinoline³¹ (0.65 g, 2.99 mmol) was prepared in benzene (5 cm³) under a nitrogen atmosphere. (Bromomethyl)chlorodimethylsilane (0.56 g, 2.99 mmol) was added drop-wise with stirring and the solution allowed to stand for 30 minutes at room temperature. After removal of the solvent the product was recrystallised from acetonitrile to give colourless cubic crystals (0.74 g, 84%); δ_H (400 MHz, CDCl₃, Me₄Si) 0.81 [6H, s, Si(CH₃)₂], 3.94 (2H, s, N-CH₂), 7.04 (1H, d, J 8.5, H3), 7.55 (1H, m, H6), 7.91-7.84 (3H, m, H5/H7/H8) and 8.22 (1H, d, J 8.5, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 6.1 [Si(CH₃)₂], 39.0 (N-CH₂), 114.6 (C3), 117.1 (C8), 122.3 (C4a), 125.5 (C6), 129.4 (C5), 133.3 (C7), 137.8 (C8a), 144.1 (C4) and 163.4 (C2); δ_{si} (79 MHz, CDCl₃, Me₄Si) -28.9. m/z 297 (M⁺, 4%), 296 (M⁺ – H, 9), 295 (M⁺, 4), 294 $(M^+ - H, 9)$, 282 $(M^+ - CH_3, 1)$, 280 $(M^+ - CH_3, 6)$, 216 $(M^+ - Br, 100), 128 [M^+ - CH_2Si(CH_3)_2Br, 31]$ (Found: C, 49.37; H, 4.88; N, 4.79. C₁₂H₁₄BrNOSi requires C, 48.65; H, 4.76; N, 4.73%).

1-(Trifluoromethylsulfonyloxydimethylsilylmethyl)-2quinolone 15d

To a solution of 15b (0.37 g, 1.47 mmol) under a nitrogen atmosphere, was added trimethylsilyl triflate (0.34 g, 1.53 mmol) by syringe, drop-wise, with stirring. After 30 minutes the solvent was removed by distillation at atmospheric pressure under nitrogen followed by pumping at high vacuum. The crude product was washed with diethyl ether $(2 \times 5 \text{ cm}^3)$ and dried under high vacuum for 2 hours. Recrystallisation from benzene gave colourless cubic crystals (0.48 g, 89%); $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.69 [6H, s, Si(CH₃)₂], 3.88 (2H, s, N-CH₂), 7.11 (lH, d, J 9.2, H3), 7.64 (1H, m, H6), 7.95-7.88 (3H, m, H5/H7/ H8) and 8.36 (lH, d, J 9.2, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 2.7 [Si(CH₃)₂], 37.2 (N-CH₂), 113.8 (C3), 117.2 (C8), 119.8 (q, ¹*J*_{CF} 316.4, SO₃CF₃), 122.8 (C4a), 126.4 (C6), 129.7 (C5), 133.9 (C7), 137.7 (C8a), 145.5 (C4) and 163.4 (C2); $\delta_{\rm F}$ (90 MHz, CDCl₃) -79.9; δ_{si} (79 MHz, CDCl₃, Me₄Si) -8.1; *m/z* 365 (M⁺, 20%), 364 (M⁺ - H, 27), 350 (M⁺ - CH₃, 18), 216 (M⁺ -SO₃CF₃, 100), 128 [M⁺ – CH₂Si(CH₃)₂SO₃CF₃, 49] (Found: C,

42.24; H, 3.99; N, 3.77. $C_{13}H_{14}F_3NO_4Si$ requires C, 42.73; H, 3.86; N, 3.83%).

1,1,3,3-Tetramethyl-1,3-bis(2-oxo-1,2-dihydro-1-quinolylmethyl)disiloxane 16

1-(Chlorodimethylsilylmethyl)-2-quinolone 15b (4.54 g, 15.33 mmol) was dissolved in acetone (20 cm³) with stirring. Distilled water (20 cm³) was added and stirring continued for a further 16 hours at room temperature. The solution was extracted with chloroform $(3 \times 50 \text{ cm}^3)$ and the aqueous phase discarded. The extracts were combined and dried over magnesium sulfate. Removal of the solvent initially by rotary evaporation and latterly by high vacuum pumping afforded 16 as a colourless, highly viscous oil (5.2 g, 76%); $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.13 [12H, s, Si(CH₃)₂], 3.66 (4H, s, N-CR₂), 6.72 (2H, d, J 9.2, H3), 7.20 (2H, m, H6), 7.39 (2H, m, H8), 7.57 (4H, m, H5/H7) and 7.66 (2H, d, J 9.2, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 1.1 [Si(CH₃)₂], 35.4 (N-CR₂), 115.3 (C8), 120.8 (C4a), 120.9 (C3), 121.8 (C6), 128.7 (C5), 130.3 (C7), 138.4 (C4), 139.9 (C8a) and 161.8 (C2); δ_{si} (79 MHz, CDCl₃, Me₄Si) 1.5; *m/z* (EI) 433 ($M^+ - CH_3$, 3%), 290 ($M^+ - C_9H_6NO$, 100), 216 ($M^+ C_{11}H_{12}NOSi, 97$ [Found: $M^+ - CH_3, 433.1404. C_{23}H_{25}N_2O_3Si_2$ requires 433.1404; Found $M^+ - C_9H_6NO$, 290.1033 (EI). C₁₄H₂₀NO₂Si₂ requires 290.1033].

1,1,3,3-Tetramethyl-1,3-bis(2-trimethylsiloxyquinoliniomethyl)disiloxane ditriflate 17

In a 10 mm NMR tube capped by a rubber septum was prepared a solution of **16** (0.45 g, 1.00 mmol) in deuteriochoroform (2.5 cm³). To the solution was added, by syringe, trimethylsilyl triflate (0.45 g, 2.02 mmol) and the reagents shaken briefly together. Compound **17** could only be observed in solution and is characterised by its NMR spectra; $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.08 [18H, s, Si(CH₃)₃], 0.73 [12H, s, Si(CH₃)₂], 3.96 (4H, s, N-CH₂), 7.22 (2H, d, *J* 9.4, H3), 7.67 (2H, m, H6), 7.88 (2H, m, H8), 7.95 (2H, m, H7), 8.03 (2H, m, H5) and 8.56 (2H, d, *J* 9.4, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 1.6 [Si(CH₃)₂], 2.0 [Si(CH₃)₃], 37.1 (N-CR₂), 113.7 (C3), 117.1 (C8), 120.9 (q, ¹*J*_{CF} 320.0, SO₃CF₃), 123.2 (C4a), 126.5 (C6), 130.1 (C5), 133.9 (C7), 137.6 (C8a), 146.3 (C4) and 163.3 (C2); $\delta_{\rm F}$ (90 MHz, CDCl₃) -80.0; $\delta_{\rm Si}$ (79 MHz, CDCl₃, Me₄Si) -0.8 [Si(CH₃)₂] and 11.7 [Si(CH₃)₃].

2-(Trimethylsiloxy)pyrimidine

Dried 2-hydroxypyrimidine hydrochloride (3.0 g, 23 mmol) was suspended in dry benzene (20 ml) under nitrogen. *N*,*N*-Diethyltrimethylsilylamine (4.6 g, 32 mmol) was then added and the mixture stirred under reflux for three hours, during which time the 2-hydroxypyrimidine hydrochloride dissolved and a solid (diethylamine hydrochloride) sublimed into the condenser. After cooling, the solvent was removed under vacuum, and the product purified by vacuum distillation to give 2-(trimethylsilyloxy)pyrimidine as a yellow liquid in a yield of 3.3 g (85%); v_{max} (neat)/cm⁻¹ 850, 939, 1253, 1350, 1560, 1429 and 2960; $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.39 [9H, s, Si(CH₃)₃], 6.90 (1H, t, *J* 4.8, H4) and 8.47 (2H, d, *J* 4.8, H3, H5); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 0.0 (SiMe₃), 114.8 (C5), 159.2 (C4 and 6) and 163.7 (C2); $\delta_{\rm Si}$ (79 MHz, CDCl₃, Me₄Si) 23.2.

N-(Chlorodimethylsilylmethyl)-2-pyrimidone 18b

2-(Trimethylsiloxy)pyrimidine was dissolved in dry diethyl ether under nitrogen. Chloro(chloromethyl)dimethylsilane was then added, the flask agitated briefly to mix the reactants, and then left for three hours. After this time a yellow precipitate had formed. The solvent was removed and the precipitate washed with further dry diethyl ether before being dried under vacuum. $v_{max}(neat)/cm^{-1} 836, 1564, 1634 and 1743; \delta_{\rm H} (400 \text{ MHz, CDCl}_3, \text{Me}_4\text{Si}) 0.62 [6\text{H}, s, Si(CH_3)_2], 3.65 (2\text{H}, s, \text{NCH}_2), 6.73 (1\text{H}, \text{dd},$ J 6.5, 4.0, H5), 8.14 (1H, dd, J 6.5, 2.4, H4) and 8.60 (1H, dd, J 4.0, 2.4, H6); δ_c (100 MHz, CDCl₃, Me₄Si) 7.4 (SiMe₂), 44.9 (SiCH₂), 109.8 (C5), 149.6 (C4), 160.9 (C6) and 167.3 (C2); δ_{si} (79 MHz, CDCl₃, Me₄Si) -33.7; m/z (EI) 204, 202 (M⁺), 189, 187 (M⁺ – Me), 164 (M⁺ – Cl) (Found: M⁺, 202.033. C_7H_{11} -N₂OSiCl requires 202.033).

N-(Bromodimethylsilylmethyl)-2-pyrimidone 18c

2-(Trimethylsiloxy)pyrimidine was dissolved in dry diethyl ether. (Bromomethyl)chlorodimethylsilane was then added and the flask briefly agitated to mix the reactants. After standing for two hours, a white precipitate had formed. The solvent was removed and the precipitate dried under vacuum; $v_{max}(neat)/$ cm⁻¹ 839, 1101, 1215, 1583, 1734 and 2960; $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.84 [6H, s, Si(CH₃)₂], 4.02 (2H, s, NCH₂), 7.20 (1H, dd, 1H, J 6.3, 4.7, H5), 8.61 (1H, dd, J 6.3, 2.4, H4) and 8.89 (1H, dd, J 4.7, 2.4, H6); δ_c (100 MHz, CDCl₃, Me₄Si) 7.5 (SiMe₂), 45.4 (SiCH₂), 111.9 (C5), 151.3 (C4), 161.2 (C6) and 167.5 (C2); δ_{Si} (79 MHz, CDCl₃, Me₄Si) -27.6 [Found: M^+ – Me, 167.0641 (EI). $C_7H_{11}N_2OSi$ requires 167.0641].

3-(Fluorodimethylsilylmethyl)-4-pyrimidone 19a

As a result of competing desilylation, the proportion of antimony trifluoride was reduced to approximately 0.25 equivalents. Thus, using a similar procedure to that above, 3-(chlorodimethylsilylmethyl)-4-pyrimidone 19b (4.95 g, 24.43 mmol) was suspended in 20 cm³ benzene and reacted with antimony trifluoride (1.09 g, 6.10 mmol). This gave 3-(fluorodimethylsilylmethyl)-4-pyrimidone as a pale yellow oil (1.9 g, 42%); $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.37 [6H, d, ³J_{HF} 7.6, Si(CH₃)₂], 3.32 (2H, s, N-CH₂), 6.51 (1H, d, ³J_{H5H6} 7.2, H5), 7.98 (1H, d, ³J_{H6H5} 7.2, H6), 8.27 (1H, s, H2); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) -0.2 [d, ${}^{2}J_{CF}$ 18.3, Si(CH₃)₂], 37.3 (d, ${}^{2}J_{CF}$ 32.9, N-CH₂), 114.0 (C5), 151.8 (C2), 154.6 (C6) and 162.3 (C4); $\delta_{\rm F}$ (90 MHz, CDCl₃, Me₄Si) – 141.6; δ_{Si} (79 MHz, CDCl₃, Me₄Si) 8.8 (d, ¹J_{SiF} 269.0) [Found: MH⁺, 187.0703 (FAB). C₇H₁₂FN₂OSi requires 187.0703].

3-(Chlorodimethylsilylmethyl)-4-pyrimidone 19b

Using a similar procedure to that above, chloro(chloromethyl)dimethylsilane (1.48 g, 10.35 mmol) was reacted with 4-(trimethylsiloxy)pyrimidine (1.74 g, 10.34 mmol) in 5 ml of benzene. This gave 3-(chlorodimethylsilylmethyl)-4-pyrimidone as a white crystalline solid (1.8 g, 86%) $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.68 [6H, s, Si(CH₃)₂], 3.53 (2H, s, N-CH₂), 6.63 (1H, d, ³J_{H5H6} 6.4, H5), 8.13 (1H, d, ³J_{H6H5} 6.4, H6) and 8.38 (1H, s, H2); δ_c (100 MHz, CDCl₃, Me₄Si) 5.7 [Si(CH₃)₂], 39.4 (N-CH₂), 112.7 (C5) 150.9 (C2), 156.0 (C6) and 163.3 (C4); δ_{si} (79 MHz, CDCl₃, Me₄Si) -16.7; *m/z* (EI) 202/204 (3:1) (M⁺) (Found: M⁺, 202.0329. C₇H₁₁³⁵ClN₂OSi requires 202.0329), 167 (M⁺ – Cl) (Found: M⁺ – Cl, 167.0641. C_7H_{11} -N₂OSi requires 167.0641).

1-(Fluorodimethylsilylmethyl)quinoxalin-2-one 20a

1-(Chlorodimethylsilylmethyl)quinoxalin-2-one 20b (11.02 g, 43.60 mmol) was suspended in benzene (40 ml) under a nitrogen atmosphere. Granular antimony trifluoride (2.60 g, 14.55 mmol) was introduced and the reagents stirred together for 1 hour at room temperature. The organic phase was decanted from the oily antimony-containing by-products and hydrolysed by shaking with distilled water (50 cm³). The organic phase was extracted into dichloromethane $(3 \times 50 \text{ cm}^3)$. The extracts were combined and dried over magnesium sulfate and the solvents removed by rotary evaporation. The residue was recrystallised from acetonitrile to give 1-(fluorodimethylsilylmethyl)quinoxalin-2-one as a white crystalline solid (5.4 g, 53%); $\delta_{\rm H}$ (400 MHz, CDCl₃, Me₄Si) 0.43 [6H, d, ³J_{HF} 7.8, Si(CH₃)₂], 3.23 (2H, s, N-CH₂), 7.47 (1H, m, H6), 7.56 (1H, d, ³J_{H8H7} 8.4, H8), 7.71

(1H, m, H7), 7.96 (1H, d, ³J_{H5H6} 8.0, H5) and 8.40 (1H, s, H3); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 1.3 [d, ²J_{CF} 22.1, Si(CH₃)₂], 33.4 (d, ²*J*_{CF} 40.5, N-CH₂), 115.1 (C8), 124.8 (C6), 130.6 (C5), 131.9 (C7), 132.9 (C4a), 134.4 (C8a), 146.9 (C3) and 155.5 (C2); $\delta_{\rm F}$ (90 MHz, CDCl₃, Me₄Si) -128.7; $\delta_{\rm Si}$ (79 MHz, CDCl₃, Me_4Si) -6.1 (d, ${}^{1}J_{SiF}$ 260.3); m/z (EI) 236 (M⁺), 235 (M⁺ - H), 221, 158, 77 (Found C, 56.40; H, 5.49; N, 12.30. C₁₁H₁₃FN₂OSi requires C, 55.91; H, 5.54; N, 11.85%).

1-(Chlorodimethylsilylmethyl)quinoxalin-2-one 20b

Chloro(chloromethyl)dimethylsilane (0.56 g, 3.90 mmol) was added drop-wise with stirring to a solution of 2-(trimethylsiloxy)quinoxaline (0.85 g, 3.89 mmol) in 10 ml of benzene under a nitrogen atmosphere. The solution was allowed to stand for 30 minutes at room temperature. The solvent was removed by distillation under nitrogen and latterly by high vacuum pumping. By washing the resulting brown solid residue with diethyl ether $(2 \times 2 \text{ cm}^3)$ and drying under high vacuum for 1 hour, a creamy white powder was obtained (0.80 g, 81%); δ_H (400 MHz, CDCl₃, Me₄Si) 0.76 [6H, s, Si(CH₃)₂], 3.54 (2H, s, N-CH₂), 7.58 (1H, ddd, ${}^{3}J_{H6-H5}$ 8.4, ${}^{3}J_{H6-H7}$ 7.6, ${}^{4}J_{H6-H8}$ 1.1, H6), 7.67 (1H, dd, ${}^{3}J_{H8-H7}$ 8.8, ${}^{4}J_{H8-H6}$ 1.1, H8), 7.80 (1H, ddd, ${}^{3}J_{H7-H8}$ 8.8, ${}^{3}J_{H7-H6}$ 7.6, ${}^{4}J_{H7-H5}$ 1.6, H7), 8.05 (1H, dd, ${}^{3}J_{H5-H6}$ 8.4, ${}^{4}J_{H5-H7}$ 1.6, H5) and 8.53 (1H, s, H3); $\delta_{\rm C}$ (100 MHz, CDCl₃, Me₄Si) 6.9 [Si(CH₃)₂], 37.3 (N-CH₂), 115.7 (C8), 126.0 (C6), 130.9 (C5), 131.5 (C4a), 132.7 (C7), 135.1 (C8a), 144.3 (C3) and 155.8 (C2); δ_{si} (79 MHz, CDCl₃, Me₄Si) -27.1; *m/z* (EI) 252/254 (3:1) (M⁺), 251/253 (3:1) (M⁺ - H) 237/239 (3:1) (M⁺ - Me), 217, 129 [Found: M⁺, 252.0486 (EI). C₁₁H₁₃³⁵ClN₂OSi requires 252.0486].

References

- 1 (a) D. Britton and J. D. Dunitz, J. Am. Chem. Soc., 1981, 103, 2971; (b) H. B. Bürgi and J. D. Dunitz, Acc. Chem. Res., 1983, 16, 153.
- 2 A. J. Kirby, Adv. Phys. Org. Chem., 1994, 29, 87.
- 3 M. J. Barrow, E. A. V. Ebsworth and M. M. Harding, J. Chem. Soc., Dalton Trans., 1980, 1838.
- 4 A. A. Macharashvili, V. E. Shklover, Yu. T. Struchkov, G. I. Oleneva, E. P. Kramarova, A. G. Shipov and Yu. I Baukov, J. Chem. Soc., Chem. Commun., 1988, 683. 5 V. F. Sidorkin, V. V. Vladimirov, M. G. Voronkov and V. A.
- Pestunovich, THEOCHEM, 1991, 228, 1.
- 6 Yu. E. Ovchinnikov, A. A. Macharashvili, Yu. T. Struchkov, A. G. Shipov and Yu. I. Baukov, J. Struct. Chem., 1994, 35, 91.
- 7 A. R. Bassindale and M. Borbaruah, J. Chem. Soc., Chem. Commun., 1991, 1499.
- 8 A. R. Bassindale and M. Borbaruah, J. Chem. Soc., Chem. Commun., 1991, 1501.
- 9 C. J. Jameson and J. Mason, in The Chemical Shift, ed. J. Mason, Plenum Press, New York, 1987.
- 10 Y. Takeuchi and T. Takayama, in The Chemistry of Organosilicon Compounds Volume 2, ed. Z. Rappoport and Y. Apeloig, Wiley, New York, 1998, ch. 6, pp. 267–354.
- 11 A. R. Grimmer, F. Von-Lampe and M. Magi, Chem. Phys. Lett., 1986, 132, 549.
- 12 A. I. Albanov, L. I. Gubanova, M. F. Larin, V. A. Pestunovich and M. G. Voronkov, J. Organomet. Chem., 1983, 244, 5.
- 13 M. J. Buchanan, R. H. Cragg and A Steltner, J. Organomet. Chem., 1976, 120, 189.
- 14 R. W. Hillyard, C. M. Ryan and C. H. Yoder, J. Organomet. Chem., 1978, **153**, 369.
- 15 H. Marsmann, in NMR 17; Oxygen-17 and Silicon-29, ed. P. Diehl, E. Fluck and R. Kosfeld, Springer-Verlag, Berlin, 1981, ch. 2, pp. 65-235.
- 16 A. Fratiello, G. A. Vidulich, V. K. Anderson, M. Kazazian, C. S. Stover and H. Sabounjian, J. Chem. Soc., Perkin Trans. 2, 1983, 475.
- 17 A. R. Bassindale, S. J. Glynn and P. G. Taylor, in The Chemistry of Organosilicon Compounds Volume 2, ed. Z. Rappoport and Y. Apeloig, Wiley, New York, 1998, ch. 9, pp. 495–511.
- 18 D. Kost and I. Kalikhman, in The Chemistry of Organosilicon Compounds Volume 2, ed. Z. Rappoport and Y. Apeloig, Wiley, New York, 1998, ch. 23, pp. 1339–1446.
- 19 K. D. Onan, A. T. McPhail, C. H. Yoder and R. W. Hillyard Jr., J. Chem. Soc., Chem. Commun., 1978, 209.

- 20 A. R. Bassindale and T. Stout, J. Chem. Soc., Chem. Commun., 1984, 1388.
- 21 D. Kummer and S. H. Abdel Halim, Z. Anorg. Allg. Chem., 1996, 622, 57.
- 22 M. G. Voronkov, Yu. L. Frolov, V. M. D'Yakov, N. N. Chipanina, I. I. Gubanova, G. A. Gavrilova, L. V. Klyba and T. N. Aksamenova, J. Organomet. Chem., 1980, 201, 165.
- 23 A. I. Albanov, L. I. Gubanova, M. F. Larin, V. A. Pestunovich and M. G. Voronkov, J. Organomet. Chem., 1983, 244, 5.
- 24 Yu. L. Frolov and M. G. Voronkov, J. Mol. Struct., 1990, 217, 265.
- 25 G. Klebe, K. Hensen and J. Vonjouanne, J. Organomet. Chem., 1983, 258, 137; A. I. Albanov, V. A. Petunovich, O. M. Trofimova, N. F. Chernov and M. G. Voronkov, Z. Obshch. Khim., 1996, 66, 1949.
- 26 V. K. Jain, J. Mason., B. S. Saraswat and R. C. Mehrotra, *Polyhedron*, 1985, 4, 2089.

- 27 V. K. Jain, J. Mason and R. C. Mehrotra, J. Organomet. Chem., 1986, 309, 45.
- 28 M. Leeaphon, K. Rohl, R. J. Thomas, P. E. Fanwick and R. A. Walton, *Inorg. Chem.*, 1993, **32**, 5562.
- 29 O. Exner, in *Correlation Analysis in Chemistry*, ed. N. B. Chapman and J. Shorter, Plenum Press, New York, 1978, ch. 10, pp. 439–540.
- 30 D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965; V. A. Palm, Tables of rate and equilibrium constants of heterolytic organic reactions, Moscow, 1976, vol. 2.
- 31 E. Lukevics, I. Segal, I. Birgele and A. Zablotskaya, *Khim. Geterolsikl. Soedin*, 1994, 9, 1255.

Paper 9/04402G